• Registration
  • Login
JETem
  • Home
  • About
    • Aim and Scope
    • Our Team
    • Editorial Board
    • FAQ
  • Issues
    • Current Issue
    • Ahead of Print
    • Past Issues
  • Visual EM
    • Latest Visual EM
    • Search Visual EM
    • Thumbnail Library
  • For Authors
    • Instructions for Authors
    • Submit to JETem
    • Photo Consent
    • Policies
      • Peer Review Policy
      • Copyright Policy
      • Editorial Policy, Ethics and Responsibilities
      • Conflicts of Interest & Informed Consent
      • Open Access Policy
  • For Reviewers
    • Instructions for JETem Reviewers
    • Interested in Being a JETem Reviewer?
  • Topic
    • Abdominal / Gastroenterology
    • Administration
    • Board Review
    • Cardiology / Vascular
    • Clinical Informatics, Telehealth and Technology
    • Dermatology
    • EMS
    • Endocrine
    • ENT
    • Faculty Development
    • Genitourinary
    • Geriatrics
    • Hematology / Oncology
    • Infectious Disease
    • Miscellaneous
    • Neurology
    • Ob / Gyn
    • Ophthalmology
    • Orthopedics
    • Pediatrics
    • Procedures
    • Psychiatry
    • Renal / Electrolytes
    • Respiratory
    • Toxicology
    • Trauma
    • Ultrasound
    • Wellness
    • Wilderness
  • Modality
    • Curricula
    • Innovations
    • Lectures
    • Oral Boards
    • Podcasts
    • Simulation
    • Small Group Learning
    • Team Based Learning
    • Visual EM
  • Contact Us

Simulation

Methemoglobinemia

Ibrahim Alagha, BS*, Ghadeer Doman, MD^  and Shaza Aouthmany, MD†

DOI: https://doi.org/10.21980/J8PH1B Issue 7:4 No ratings yet.
At the end of this simulation case, participants should be able to: 1) recognize shortness of breath, cyanosis and respiratory distress, and the difference between all of them based on the clinical presentation 2) identify the underlying cause of the condition by conducting a thorough history and physical 3) know how to identify and treat methemoglobinemia by ordering necessary labs and interventions and understand the pathophysiology leading to methemoglobinemia 4) recognize patient’s response to treatment and continue to reassess.
Current IssueSimulationToxicology

Torsade de Pointes Due to Hypokalemia and Hypomagnesemia

Mary Crista Cabahug* and Amrita Vempati, MD*

DOI: https://doi.org/10.21980/J8JP8G Issue 7:4 No ratings yet.
By the end of this simulation session, learners will be able to: 1) formulate appropriate work-up for altered mental status (AMS) 2) recognize hypokalemia and associated findings on ECG 3) address hypomagnesemia in a setting to hypokalemia 4) manage pulseless VT by following advanced cardiac life support (ACLS) 5) recognize and address TdP 6) provide care after return of spontaneous circulation (ROSC) 7) consult intensivist and admit to intensive care unit (ICU).
Cardiology/VascularCurrent IssueSimulation

Cyanide Poisoning

Ghadeer Doman, MD*, Jihad Aoun, MS^, Joshua Truscinski, MS^, Mariah Truscinski, MD^ and Shaza Aouthmany, MD^

DOI: https://doi.org/10.21980/J80W76 Issue 7:3 No ratings yet.
After the completion of this simulation, participants will have learned how to: 1) identify clues of smoke inhalation based on a physical examination; 2) identify smoke inhalation-induced airway compromise and perform definitive management; 3) create a differential diagnosis for victims of fire cyanide poisoning, carbon monoxide, and carbon dioxide; 4) appropriately treat cyanide poisoning; 5) demonstrate the importance of preemptively treating for cyanide poisoning; 6) perform an initial physical examination and identify physical marks suggesting the patient is a fire and smoke inhalation victim; and 7) familiarize themselves with the Cyanokit and treatment with hydroxocobalamin.
SimulationToxicology

Aortic Dissection Presenting as a STEMI

Jennifer Yee, DO* and Andrew P Kendle, MD*

DOI: https://doi.org/10.21980/J8W647 Issue 7:3 No ratings yet.
At the conclusion of the simulation session or during the debriefing session, learners will be able to: 1) Verbalize the anatomical differences and management of Stanford type A and type B aortic dissections, 2) Describe physical exam findings that may be found with ascending aortic dissections, 3) Describe the various clinical manifestations of the propagation of aortic dissections, 4) Discuss the management of aortic dissection, including treatment and disposition.
Cardiology/VascularSimulation

Breaking Bad News in the Emergency Department

Susan Siraco, BA*, Cindy Bitter, MD, MPH, MA^ and Tina Chen, MD^ 

DOI: https://doi.org/10.21980/J81W7H Issue 7:2 No ratings yet.
At the conclusion of these two simulation cases, learners will be able to 1) recognize signs of poor prognosis requiring emergent family notification, 2) take practical steps to contact family using available resources and personnel, 3) establish goals of care through effective family discussion, 4) use a structured approach, such as GRIEV_ING, to deliver bad news to patients’ families, and 5) name the advantages of family-witnessed resuscitation.
Miscellaneous (stats, etc)Simulation

Infant Botulism

Victoria Morris, MD*, Robert Wians, MD, MPH*, Jessica Wilson, MD* and Gowri Stevens, MD* 

DOI: https://doi.org/10.21980/J8X35W Issue 7:2 No ratings yet.
After this simulation learners should be able to: 1) develop a differential diagnosis for the hypotonic infant, 2) recognize signs and symptoms of infant botulism, 3) recognize respiratory failure and secure the airway with appropriate rapid sequence intubation (RSI)  medications, 4) initiate definitive treatment of infant botulism by mobilizing resources to obtain antitoxin, 5) continue supportive management and admit the patient to the pediatric intensive care unit (PICU), 6) understand the pathophysiology and epidemiology of infant botulism, 7) develop communication and leadership skills when evaluating and managing critically ill infants. 
PediatricsSimulationToxicology

Lightning Strike

Thomas Powell, MD*, Aubri Charnigo, MD* and Jennifer Yee, DO* 

DOI: https://doi.org/10.21980/J8SD2M Issue 7:2 No ratings yet.
At the conclusion of the simulation session, learners will be able to: 1) Describe how to evaluate for scene safety in an outdoor space during a thunderstorm, 2) Obtain a relevant focused physical examination of the lightning strike patient, 3) Describe the various manifestations of thermo-electric injury, 4) Discuss the management of the lightning strike patient, including treatment and disposition, 5) Outline the principles of reverse triage for lightning strike patients, and 6) Describe long-term complications of lightning strike injuries.
SimulationWilderness

Syncope Due to a Ruptured Ectopic Pregnancy

Derek JC Hunt, DO*, Kevin McLendon, DO* and Jodi Conrad, DO*

DOI: https://doi.org/10.21980/J86M0N Issue 7:1 No ratings yet.
At the conclusion of this simulation, the learner will be able to: 1) review the initial management of syncope; 2) utilize laboratory and imaging techniques to diagnose a ruptured ectopic pregnancy; and 3) demonstrate the ability to resuscitate and disposition an unstable ruptured ectopic pregnancy.
Ob/GynSimulation

Small-Scale High-Fidelity Simulation for Mass Casualty Incident Readiness

Seanne Facho, MD*, Andrea Weiers, MD*, Amber Jones, MD*, Sage Wexner, MD* and Jessie Nelson, MD^

DOI: https://doi.org/10.21980/J84S8S Issue 6:4 No ratings yet.
The learners will (1) recognize state of mass casualty exercise as evidenced by verbalization or triaging by START (Simple Triage and Rapid Treatment) criteria, (2) triage several patients, including critically ill or peri-arrest acuities, according to START criteria, (3) recognize the need to limit care based on available resources, as evidenced by verbal orders or communication of priorities to team, and (4) limit emergency resuscitation, given limited resources, by only providing treatments and employing diagnostics that do not deplete limited time, staffing, and space inappropriately.
EMSSimulation

Cardiac Arrest in an Adolescent with Pulmonary Embolism

Matthew Myers, DO* and Courtney Devlin, MD*

DOI: https://doi.org/10.21980/J8135T Issue 6:4 No ratings yet.
ABSTRACT: Audience: The target audience of this simulation is emergency medicine residents and medical students. The simulation is based on a real case of a 13-year-old female who presented with seizures and hypoxia and was ultimately diagnosed with pulmonary embolism. The case highlights diagnosis and management of an adolescent with new onset seizures, deterioration in status, and treatment options in
Cardiology/VascularPediatricsSimulation
1›»
Page 1 of 6
JETem is an online, open access, peer-reviewed journal-repository for EM educators

Most Viewed

  • A Model Curriculum for an Emergency Medicine Residency Rotation in Clinical Informatics
  • Use of An Ophthalmology Tutorial to Improve Resident Comfort with the Emergency Eye Exam
  • A Novel Module Based Method of Teaching Electrocardiogram Interpretation for Emergency Medicine Residents
  • Respiratory Distress in the Pediatric ED: A Case-based Self-directed Learning Module
  • Methemoglobinemia

Visit Our Collaborators

About

Education

Learners should benefit from active learning. JETem accepts submissions of team-based learning, small group learning, simulation, podcasts, lectures, innovations, curricula, question sets, and visualEM.

Scholarship

We believe educators should advance through the scholarship of their educational work. JETem gives educators the opportunity to publish scholarly academic work so that it may be widely distributed, thereby increasing the significance of their results.

Links

  • Home
  • Aim and Scope
  • Current Issue
  • For Reviewers
  • Instructions for Authors
  • Contact Us

Newsletter

Sign up to receive updates from JETem regarding newly published issues and findings.

Copyright © 2016 JETem. All rights reserved.